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ABSTRACT

Different finite-element models previously set up for thermal analysis of the space shuttle orbiter structure were

discussed and their shortcomings were identified. Element density criteria were established for the finite-element

thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria were based on

rigorous studies on solution accuracies using different finite-element models having different element densities set up

for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central

processing unit (CPU) time was discussed. Based on the newly established element density criteria, the orbiter

wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of

computation CPU time requirements. The results showed that the distributions of the structural temperatures and

the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was

at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using

high-density elements for transient thermal analysis was possible if a CPU optimization technique was used.

L_

INTRODUCTION

During the early stage of space shuttle development, the heat transfer analysis of the complex orbiter structure

was carried out by using the so-called "plug" method. Only selected small, local regions of the orbiter were modeled

with three-dimensional finite-difference (or lumped parameters) plug thermal models (fig. 1). Structural tempera-

tures calculated from the plug models were then interpolated to obtain structural temperatures in the unmodeled

regions. Approximately 90 percent of the temperature inputs used in the early days of orbiter thermal stress analysis

was obtained by this type of interpolation. The procedure was tedious, laborious, and expensive. For structures with

steep temperature gradients near the heat sinks (for example, the orbiter wing spar and rib caps), the structural tem-

perature distribution obtained from the interpolation method could be erroneous and could cause inaccurate thermal

stress predictions.

After the development of finite-element heat transfer analysis computer codes such as the structural performance

and resizing (SPAR) finite-element thermal analysis computer program (ref. I), it became possible to model larger

regions of the orbiter structure including the whole wing. The use of the finite-element method instead of the con-

ventional lumped-parameter (or finite-difference) method enables the use of the same thermal model as a structural

model for thermal stress calculations by simply removing elements set up for the thermal protection system (TPS)

(not a major mechanical load-carrying structural component). In the past several years, Ko and others (refs. 2 to

9) conducted extensive heat transfer and thermal stress analyses of the space shuttle orbiter using a series of finite-

element models set up for three wing segments, one fuselage cross section, and the whole wing. These thermal

models were used to calculate orbiter structural temperatures which were correlated with the actual flight-measured

data during the initial orbiter tests of the space shuttle Columbia (refs. 2 to 8). The earlier thermal models set up for

the orbiter structure were by no means perfect and had shortcomings in the light of element density, element size

distributions, and extent of the region modeled.

In the finite-element heat transfer and thermal stress analysis ofsmaU structural components, the element density

may be freely increased at will to obtain highly accurate solutions without the worry that the limit of the computer

memory core space might be reached or exceeded. However, in the finite-element thermal modeling of large, hy-

personic aircraft structures (such as the space shuttle and space plane), the use of high-density finite elements could

increase the number of radiation view factors tremendously, and could require prohibitive computer time and/or

computer core space requirements in the transient heat transfer analysis using these radiation view factors. In the

wing box-type structures, each time the number of radiation elements is doubled, the number of radiation view fac-

tors would be nearly quadrupled. Thus, in the finite-element heat transfer analysis of large aerospace structures,

the highest desirable element density is governed by the time requirement and/or by the memory capacity of the

computer used. The corresponding structural model for thermal stress analysis using the same element density as



thethermalmodelhasfarlessnodalpointsbecausethenon-load-carryingheatshieldsareremoved.It is,therefore,
not themodelto beusedtosetup thecriteriafor maximumalIowableelementdensity.Preliminarystudiesin this
areawerecarriedoutby Ko andothers(refs. 10to 12)to investigatesolutionaccurac!esobtainrdf?ffm-dlfferent
finite-elementmodel-sHagifigdifferentelementdensfliesSetupforonewingcelloftheorbiter.Thesestudiesformed
thefoundationof thestateof theartin finite-elementmodelingsof large,hypersonicaircraftstructures.

In thisreport,severalpastfinite-clementmodelssetup for tileorbiterstructurearereviewedandtheirshort-
comingsareidentified.Thecriteriafortheelementdensityandelementsizedistributionrequiredfor finite-element
modelingof largerorbiterwingregionsarediscussedindetail.Finally,thereportshowshowtooptimizetheSPAR
transientheattransferanalysiscomputationCPUtimewhenthehigh-densityelementsareused.

NOMENCLATURE

C

C21

C41

CPU

CQUAD2

CROD

E23

E25

E31

E41

E44

F,j

FRSI =

H

HRSI

i

JLOCS

J

K

Kh

Kk

K_

K21

K31

K41

K61

KS1

capacitance matrix

two-node forced convection element

four-node forced convection element

central processing unit

quadrilateral membrane and bending element

two-node tension-compression-torsion element

bar elements

zero-length element for elastically connected, geometrically coincident joints

triangular membrane element

quadrilateral membrane element

quadrilateral shear panel element

radiation view factor from element i to element j

flexible felt reusable surface insulation

convection load vector

high temperature reusable surface insulation

integer, 1, 2, 3 ....

joint locations

integer, i, 2, 3 ....

system matrix = Kk + K,- + Kh

convection matrix

conduction matrix

radiation matrix

two-node line conduction element

three-node area conduction element

four-node area conduction element

six-node volume conduction element

eight-node volume conduction element
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KTIME

LRSI

NASTRAN

Q

R

R21

R31

R41

RCONV

RNITER

RTIME

SIP

SPAR

STS-5

T

T2

TPS

Yo

['1

O-x

O-y

Tzu

control command in SPAR computer program to specify the time interval at which the system

matrix K is to be factored

low temperature reusable surface insulation

NASA structural analysis

source load vector

radiation load vector

two-node area radiation element

three-node area radiation element

four-node area radiation element

control command in SPAR computer program to set the convergence criterion for the radiation load

vector computations

control command in SPAR computer program to set the maximum number of iterations permitted

during the computations of radiation load vectors

control command in SPAR computer program to specify the time increments at which the

radiation load vectors are to be computed

strain isolation pad

structural performance and resizing

space transportation system, flight 5

absoIute temperature

final time of SPAR transient thermal analysis

thermal protection system

station in y-axis

time derivative

chordwise stress

spanwise stress

shear stress

REVIEW OF PAST MODELS

Wing and Fuselage Cross Sections

Figures 2 and 3 show two typical past thermal models (WS240, FS877) set up for the orbiter wing midspan

and midfuselage cross sections (rcf. 5). The corresponding structural models were obtained by removing the TPS

elements. In both figures, the sizes of the thermal and the corresponding structural models are compared. Notice

that the structural models are always simpler (less nodal points). These thermal models were extensively used to

calculate orbiter structural temperatures which were correlated with the actual flight data obtained from initial orbital

tests of the space shuttle Columbia (refs. 2 to 8). The WS240 model (fig. 2) has a reasonable number of elements

to give satisfactory structural temperature distributions in the chordwise direction, but not in the spanwise direction.

Also, the FS877 model (fig. 3), which is two-dimensional, can give good structural temperature distribution in the

fuselage circumferential direction, but not in the fuselage axial direction.



Bothof thesethermalmodels,whenconvertedtostructuralmodelsbyremovingTPSelements,arenotcapableof
yieldingaccuratethermalstresspredictionsbecauseof thefollowingreasons.It is wellknownthatthemagnitudes
of thecomputedthermalstressesaresensitiveto themodelingparameters(suchaselementdensity,elementsize
distributions,andextentof theregionmodeled)(refs.11and12).Forthecaseof biaxialstressfieldswhichoccur
in orbiter-typestructures(especiallywingandfuselageskins),themannerin whichtheboundaryconditionsarc
appliedcangreatlyaffectthemagnitudesof calculatedthermalstressesin theproximityof thetractedboundariesor
freeedges.Becausethethermalstressesattenuatetozeroatfreeedges,thestructuralmodelsmusthavedimensions
sufficientlylargeenoughto bebeyondtheinfluenceof theedgeeffects.Bothmodelsmentionedearlierlackthe
capacityto fulfill thosestructuralmodelingrequirements.

WholeWing

In orderto eliminatethemodelingshortcomingsthatoccurredin theWS240models(thermalandstructural),
thewholewingof theorbiterwasmodeled(refs.8and9). Figure4showsthepastthermalmodel,WING,_t upfor
theorbiterwholewing.In thefigurethesizesof boththethermain_odeiandthestructuralmodel(TPSlandinggear
andwheelwelldoorelementsremoved)arecompared.In thiscasethenumber0fnodesfor thestructuralmodelis
approximately10percentofthatof thethermalmodek i

Becauseof thefearof encounteringanddealingwithatremendousnumberof radiationviewfactors,theelement
sizesusedin theWINGmodelwererelativelycoarse.TheWINGthermalmodelrequired48,034radiationview
factorcomputationsandcanonlygive"roof"-shapedstructuraltemperaturedistributions.Therefore,thethermal
stressescalculatedbasedon thistypeof temperaturedistributionmaynotgiveaccuratepredictions.Thus,finer
elementsarerequiredfor thewholewingmodel,for whichtheoptimummanageableelementdensityhasto be
determinedfirst.

ELEMENT DENSITY

Because of the need of finding the optimum element density and element size distribution for modeling orbiter

whole wing-type structures, Ko and others (refs. 11 and 12) set up five different finite-element models (A, B, C, D,

and E) with different element densities for one orbiter wing cell (located at midspan bay 3 (fig. 5)), and examined

the effect of element density on the finite-element solution accuracies. These studies laid the foundation, or State of

the art, for choosing optimum element density in finite-element modeling of whole orbiter wing-type structures.

Figure 6 shows the wing's lower skin temperature distributions predicted from the five thermal models. Except

for model A, which had the same skin element density as that of the WING model (fig. 4), models B, C, D, and E

gave very close values of the structural temperatures at the center region of the wing's lower skin.

Figure 7 shows how tile number of radiation view factors Fij increases as the number of radiation elements

R41 (or element density) increases. For this particular type of wing cell structure, doubling the number of radiation

elements R41 would cause the number of radiation view factors F 0 to nearly quadruple.

..... Model E gives smooth stnactura_l temperature disi_bution 03gi-ff);_d its element densiiylevcl can be considered

an attractive element density to use in modeling the whole orbiter wing-type structures. However, the SPAR transient

heat transfer analysis using model E required extremely long computer CPU time because of the Computations of

the time-dependent radiation exchange vector using the 93,868 radiation view factors Fij. Thus, the use of model

E element density level in modeling the whole orbiter wing-type structures could be beyond the current computer

capabilities (memory core space and computation speed).

The structural temperature distribution given by model E has a flat region near the wing skin central region in

the chordwise direction. In this region, slightly coarser elements, as in the element density level of model D, could

be used to reduce CPU time without sacrificing the solution accuracy. As shown in the Central Processing Unit



Time Optimization section of this report, the SPAR CPU time for model D is 21 to 27 percent of that for model

E. The logical criteria for setting the clement density and size distribution for modeling large, complex aerospace

structures could be somewhere between the element density levels of models D and E (for example, eight elements

in chordwise direction and six elements in spanwise direction, with finer elements located near the heat sinks).

CENTRAL PROCESSING UNIT TIME OPTIMIZATION

In the finite-element transient heat transfer analysis using the SPAR program, the governing matrix equation

used is of the form (ref. 1)

(K_+ Kr+ Kh)T+ C7 _ = Q+ R+ H (1)

where

Kk

K_

Kh
T

C

Q
R

H

[']

is the conduction matrix,

the radiation matrix,

the convection matrix,

the absolute temperature,

the capacitance matrix,

the source load vector,

the radiation load vector,

the convection load vector, and

denotes time derivative.

In the computations using equation (1), there are several key control parameters which could be adjusted to

reduce the SPAR CPU time. However, at the same time the solution accuracy may be affected by adjusting those

control parameters. Therefore, it is vital to find out the optimum values of those control parameters which will

drastically reduce the SPAR CPU time and yet will hardly affect the solution accuracy. Those control param-

eters are:

KTIME = control command to specify the time interval at which the system matrix K(= Kj: + Kr + Kh) is to be

factored (see eq. (1)).

RTIME = control command to specify the time increments at which the radiation load vectors (R) are to be com-

puted (see eq. (1)).

RCONV = control command to set the convergence criterion for the radiation load vector computations.

RNITER = control command to set the maximum number of iterations permitted during the computation of radia-

tion load vectors (R).

Figure 8 shows the SPAR transient thermal analysis (up to 3000 sec from reentry) computation CPU time (using

the ELXSI 6400 computer) plotted as a function of the number of joint locations of thermal models for two sets of

KTIMEBRTIME values. By increasing both the values of KTIME and RTIME from 2 sec to 25 sec, the SPAR CPU

time could be drastically reduced, and the solutions remain practically unchanged. The peak skin temperatures and
actual SPAR CPU time associated with the different thermal models are tabulated in table 1. Notice that the use of

model E, which required a SPAR CPU time several times longer than that for model D, did not show any advantage

in solution accuracy.



Table1.SPARcomputationCPUtimeandpeakskintemperatures
associatedwithdifferentwingcellthermalmodels.

KTIME=RTIME,sec

Model SPARCPUtime, Peakskintemperature,
min °F

2 25 2 25

A 19.38 5.48 I01.11 101.07
B 102.13 23.18 117,25 117.27
C 177.87 35.88 117.17 117.20
D 301.02 56.45 117.26 117.30
E 1428.08 204.28 117.36 I17.42

Forconductingamorethoroughstudyof theeffectsof KTIME,RTIME,andotherSPARcontrolparameters
previouslymentioned,andfor findingtheoptimumvaluesof theseparameters,thethermalmodelD (fig.5) was
usedbecauseit requiredmuchlessSPARCPUtimethanmodelE.

Table2. SPARcomputationCPUtimesandpeakskintemperaturesbasedonthermalmodelD.

KTIME,
sec

10

25

50

100

25 _

5O

RTIME,
sec

10

25 ,_

50

100

50

RCONV

0.0001

0.0005

0.001 b

0.0001

RNITER
SPAR CPU
time, min

301.02

Peak skin temperature
oF

117.26

231.08 I 17.36

219.95 117.44

12 218.15

216.53

79.90

56.45

10 56.63

8 56.90

5 b

12

53.98

52.77

50.10

47.02

45.48

aOptimum KTIME and RTIME.
bDefault value.
CRadiation exchange vectors did not converge,

--i?ill = __7 _;_?L_._

117.36

116.55

117.39

117.30

117.30

117.30

C

116.78

116.24

117.15

116.87

117.07

Table 2 summarizes the results of this investigation. Figure 9 shows the data of table 2 plotted in the KTIME/

RTIME space. Notice that by increasing KTIME from 2 sec to 25 sec (holding RTIME = 2 see), the SPAR CPU time

could be reduced from 301.02 inin (point A) dbwri t0 219.95 min (point B). This is an approximately 27-percent

reduction in SPAR CPU time. Further increase in the value of KTIME offered very little gain in saving SPAR CPU

time. Next, by increasing RTIME from 2 sec to 25 sec (keeping KTIME ---25 sec), the SPAR CPU time could be

further reduced from 219.95 min (point B) down to 56.45 min (point C). This gives another 54-percent reduction

(based on point A) in the SPAR CPU time without affecting the solution accuracy. Further increase in the value of

=

h

L

L



RTIME beyond point C did not save much SPAR CPU time. At point C the SPAR CPU time is only 19 percent

of that at point A, and the solution error is only 0.04 °F (compared to that at point A). Additional increase in both

values of KTIME and RTIME to 50 see (point D) had very little improvement in CPU time, and the solution error

started to show up (0.19 °F error). Thus, point C could be chosen as the optimum point for selecting the values of

KTIME and RTIME. The reductions of the values of RCONV and RNITER from 0.0001 and 12, respectively, had

litde effect on the improvement of the SPAR CPU time (table 2).

MIDSPAN MODEL

Element Density

Based on the knowledge gained from the studies of element density requirements and the SPAR CPU time

optimization described earlier, the element density criteria is established for the finite-element modelings of the

orbiter wing-type structures. Before modeling the orbiter whole wing with high-density elements, it is wise to first

model one segment of the orbiter wing with high-density elements and explore the CPU time requirements in the

SPAR transient thermal analysis. The CPU time found for the wing segment model may then be extrapolated to

estimate the CPU time requirement for the whole wing model having the same element density as the wing segment

model. The said wing segment has four bays and is located at the midspan bounded by two adjacent wing ribs located

at Yo-226 and Yo-254, respectively.

The thermal model MIDSPAN for this wing segment is shown in figure 10. In the light of structural temperature

distributions obtained from models D and E (fig. 6), the lower and upper skins of each bay of the wing segment

were modeled with eight and six different-sized elements, respectively, in the chordwise and spanwise directions

with finer elements used near the heat sinks (spar and rib caps). The MIDSPAN SPAR thermal model has 4064 joint

locations, 1149 radiation elements R41, and 137,328 radiation view factors Fij. The corresponding NASTRAN

(ref. 13) structural model has 722 grid points (18 percent of the thermal model). The sizes of the MIDSPAN thermal

and structural models are compared in table 3.

Table 3. Summary of thermal and structural models for

an orbiter wing midspan segment.

Model

Item Thermal Structural

Number of nodes
Number of elements

Number of Fij

4,046
363 K21

1,634 K41
6 K61

2,73O K81
1,149 R41

764 C41
137,328

722
674 CQUAD2
303 CROD

Total CPU time, min a
Fij computation CPU time, min

464
38

13

aELXSI 6400 computer
KTIME = RTIME = 25 sec

RCONV = 0.0001, RNITER = 12

T2 = 3000 sec



Central Processing Unit Time

By using the previously established optimum values of KTIME = RTIME = 25 sec, transient heat transfer analysis

was perfomaed on the MIDSPAN thermal model. This thermal model required 464 min computation CPU time (table

3) for the thermal analysis duration of 3000 sec. The corresponding structural model took 13 min computation CPU

time. It took only 38 min to compute the vast number (137,328) of radiation view factors. It must be emphasized

that once the radiation view factors are computed, they are stored in the computer file, and no more computations

are required in subsequent computer runs of the same thermal model. Therefore, in the transient thermal analysis
most of the computation CPU time is used in computing time-dependent structural temperatures, not in computing

radiation view factors, even though their number is enormous. This finding eliminated the fear of encountering a

huge number of view factors in the thermal modelings of large, complex aerospace structures using finer elements.

Structural Temperatures

The calculations of the structural temperatures in the MIDSPAN thermal model were based on the STS-5 surface

heating rates shown in figure 11. The distributions of skin temperatures iii time sequence are shown in figure 12.

The most severe (highest values and gradients) temperature distributions occurred at 1700 sec from reentry, and

gradually the severity tapered off as the time increased. Judging from the temperature distribution surfaces for each

bay, the use of an 8 by 6 system of element density gave acceptable smoothness of the skin temperature distributions.

Therefore, an 8 by 6 system of element density could be considered as the element density criteria for modeling such
types of aerospace structures.

Thermal Stresses

Based on the structural temperature distributions at 1700 sec, the thermal stresses cr_, cru, and r_u in the wing
skins were calculated and are shown in figures 13 to 15, respectively. Again the distributions of all three stresses

exhibited acceptable smoothness, emphasizing that 8 by 6 system element density criteria were satisfactory. Notice

that crx, whose direction is transverse to the hat stringers of the wing skins, has a higher magnitude than that of cru,
and is therefore more critical.

Thermal Deformations

=

Figure 16 shows the undeformed and deformed shapes of the MIDSPAN structural model. The lower and upper

skins of each bay bulged outwardly, with the maximum displacement of 0.08552 in. occurring near the midregion

bay 1's upper skin. This amount of deformation is way below the thickness (0.16 in.) of the SIP. A small region in

bay l's upper skin, near the spar cap separating bays 1 and 2, dented slightly inward. By observing figure 16, the
MIDSPAN structural model gave an acceptable detailed deformation field.

CONCLUSIONS

The element density level required in the finite-element thermal analysis of orbiter wing,lype structures was

investigated, and the optimization of transient thermal analysis computation central processing unit (CPU) time was

discussed. The newly established element density criteria for each wing celI were eight elements in the chordwisc

direction and six elements in the spanwise direction. The resulting distributions of structural temperatures, thermal

stresses, and thermal displacements were found to be satisfactory by using this level of element density in the thermal
modeling of an orbiter wing segment.

m



The computation CPU time required for calculating the large number of radiation view factors comprised a

small fraction of the total CPU time required for the computation of time-dependent structural temperatures. The

study of the wing segment model, using the computer CPU time optimization technique, shows that the estimated

computation CPU time required for the thermal analysis of the whole orbiter wing-type structures (with an 8 by 6

element density system) may be within the acceptable range.

Ames Research Center

Dryden Flight Research Facility

National Aeronautics and Space Administration

Edwards, California, August 22, 1988
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FRSI

Thermal model

Feature

JLOC
K21 element
K31 element
K41 element
R21 element
C21 element

FI1

Number

605
250

6
516
124

96
1564

LRSI

Structural model

Feature Number

GRID point 62
CQUAD2 element 89
CROD element 9

FS877

FRSI IT_
t

Space

LRSI

AL

i
HRSI

-t"

.L
I.__ 9468

Figure 3. SPAR thermal model FS877 setup for orbiter midfuselage cross section. TPS and cargo bay door elements

removed to convert to structural model (ref. 5).
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SPAR JLOC Element
thermal K21 K41 K81 R41 C41

model

A 112 34 28 28 15 10
B 436 54 168 224 89 56

C 636 82 232 336 137 88
D 972 98 360 560 201 120
E 2076 146 848 1344 513 320

NASTRAN Grid CQUAD2 CROD

structural
model

A 24 18 54

B 82 72 54
C 140 112 74
D 196 160 90
E 429 368 132

Fij

78

2816
6894

13500
93869

2

4 ----- '_ " T

siP

1 Model A

4

•_ - • , FRSI

4 -_- Y ModeIB

6

4 Model C

10

 4ii J, iETM_4''
] -t_ _i / 11 i !

Model D

12
FRSI

SIP

8 Model E 947o

Figure 5. SPAR thermal models A, B, C, D, E setups for orbiter wing midspan bay 3. The K8I elements for TPS

and SIP not shown; TPS and SIP removed to convert to structural models.
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Figure 6_ Distributions of orbiter wing lower skin temperatures predicted from thermal models A, B, C, D, E; time =
1,700 sec, STS-5,
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Number of radiation view factors as a function of number of radiation elements, orbiter wing midspan
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Figure 11. Surface heating rates at IVol240; STS-5.
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Figure 12. Continued.
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Figure 12. Continued.
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Figure 12. Concluded.
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Figure 13. Distributions of chordwisc stress o'_ in orbiter wing skins; time = 1700 sec, STS-5.
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Figure 14. Distributions of spanwise stress crv in orbiter wing skins; time = 1700 sec, STS-5.
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Figure 15. Distributions of shear stress rxu in orbiter wing skins; time = 1700 sec, STS-5.
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Figure 16. Deformed shape of orbiter wing midspan segment; time = 1700 sec, STS-5.
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